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ABSTRACT

In many astrophysical problems involving discs (gaseous or particulate) orbiting a dominant central mass, the gravitational potential of the disc plays an important
dynamical role. Its impact on the motion of external objects, as well as on the dynamics of the disc itself, can usually be studied using secular approximation. This Is
often done by using softened gravity to avoid the singularities that arise when calculating the orbit-averaged potential — disturbing function — of a razor-thin disc
using classical Laplace—Lagrange theory. We explore the performance of several softening formalisms proposed in the literature In reproducing the correct
eccentricity dynamics In the disc potential. We identify softening models that, in the limit of zero softening, give results converging to the expected behaviour
exactly, approximately, or not converging at all. We also develop a general framework for computing the secular disturbing function due to a disc given an arbitrary
softening prescription for a rather general form of the interaction potential. Our results demonstrate that numerical treatments of the secular disc dynamics, 1.e. by
representing the disc as a collection of N gravitationally interacting annuli, are rather demanding: for a given value of the (dimensionless) softening parameter, ¢ <
1, accurate representation of eccentricity dynamics requires N ~ CE~%, with C~0(10),1.5 < y < 2. In discs with sharp edges a very small value of the softening
parameter & (< 1072) is required to correctly reproduce eccentricity dynamics near the disc boundaries; this finding is relevant for modelling planetary rings.

1. GRAVITATIONAL POTENTIAL OF ADISC

|. Laplace-Lagrange: A common method of computing the orbit-averaged (i.e.
secular) gravitational potential R; due to a disc iIs based on Gauss’ averaging
technique: I Tt
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However, this method imposes its own problem: Ry 1s divergent at all
locations within the disc (l.e. a; < a,< a,,). For Instance, the expression

for the free precession rate induced by the disc would read as:
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where bs () are the Laplace coefficients: bs™ (a) = — AT - 2acos o) de
The integrals over bé’/”z) (a) In A, (as well as B,;) are singular — both separately
and In their combination — In the vicinity of a test-particle. This Is because

bg}? — (1 —a) ?whena - 1 (i.e. a, = a).

1. Potential Softening: To circumvent this divergence, many authors have
resorted to softened inter-particle interactions. This In turn leads to softened

3. DETAILS OF CONVERGENCE (or not)
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107 ... S opposing contributions of the
e disc rings that are close to (i.e.
with x < &, negative) and distant
(1.e. with x = &, positive) from a

given particle orbit.

i =2 The softening model of TO16
i Vyields inaccurate (divergent) results
due to Its Inability to capture the
dynamical effects of disc rings that

are adjacent to the test-particle orbit
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Similar results are obtained for

where € () > 0 is the softening parameter. eccentric discs.

Note: This does not necessarily correspond to substituting b§m> () with ‘Bgm) (a, €) In the expressions of A; and B, (Ask for details!)
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4. IMPLICATIONS FOR NUMERICAL APPLICATIONS |

~10% -o- | In. numerical studies, discs are
“on -e- 1 Often treated as a collection of N
-, -e-{ softened annuli or rings with
= prescribed spacing Interacting
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| gravitationally with each other.

1 A fine numerical sampling,
|  with N ~ C¢™* (such that C ~
O(10) and 1.5sy<2) Is
required to ensure that the
correct secular behavior Is
reproduced
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1. Heppenheimer’s method: The framework first developed by

Heppenheimer (1980) — and later extended by many authors [e.g. Silsbee &
Rafikov 2015 (SR15); Davydenkova & Rafikov 2018 (DR18); Sefilian & Touma

2019] — allows the computation of R; without Introducing ad hoc softening
parameters. Results obtained by this method have been verified against direct
orbit integrations.
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Objective: Assess how well the different formalisms relying on potential softening
reproduce the expected secular dynamics computed using the (unsoftened)
Heppenheimer method.
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Scaling of number of softened disc annuli (rings) N with the

softening parameter ¢ to ensure convergence of disc-driven

free precession A, In numerically discretized discs to the

expected results in continuous softened discs.

=» This could make numerical
studies challenging!

2. DEPENDENCE ON SOFTENING

p
We consider an axisymmetric power-law (PL) disc with X;(a) = Z, (a"”t) and
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softening for the different softening formalisms proposed in the literature.

Similar results are obtained for
eccentric discs.

analyze the behavior of A4, or equivalently Y, (p) =

Accurately capturing the secular
dynamics of particle orbits near the
sharp edges of discs/rings requires
using very small values of softening

For reference, the expected results as
computed by e.g. Silsbee & Rafikov
0.5L 1 (2015) based on Heppenheimer’s
method, i.e. without assuming any
softening, are shown in black lines.
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We find that in the limit of vanishing

softening, results obtained by the

softening formalism of:

* Touma (2002) and Hahn (2003)
converge to the expected results

* Tremaine (1998)
quantitative  differences
30%)
Teyssandier & Ogilvie (2016) are
not convergent (like the classical
L_aplace-Lagrange approach)
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Similar results are obtained for (i)
eccentric discs, and (i) other
softening formalisms
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"2 M 5. GENERAL FRAMEWORK FOR COMPUTING R,

* \We also developed a general analytical framework for computing R4 given an arbitrarily §
softened interaction potential: 1.e., ¥ =

~_<«—— Divergent
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(see Appendix A in here)

\_1* We can recover the expressions of both
Touma (2002) and Hahn (2003) If we
set F(rr,) =b% =cte and F(rr,) =
H2(r{ + 1), respectively.

The figure shows that an accurate
Implementation of the softened
potential suggested in both Tremaine
(1998) and Teyssandier & Ogilvie

We find similar behavior for both
eccentric, non-axisymmetric PL discs
and non-PL discs (e.g. Gaussian rings)

Softening

SUMMARY
- In the limit of zero softening, D= +1.0,

*The softening methods of both Touma (2002) and Hahn (2003) correctly Rt p=+0.5 - - - (2016) leads to the recovery of the
reproduce the expected eccentricity dynamics in razor-thin discs. e —— 1 expected dynamical behavior in the
*The softening method of Tremaine (1998) yields convergent results. However, "9 Softening limit of small softening.

quantitative differences (of up to ~20-30%) are observed. Ask for details!
*The softening method as implemented by Teyssandier & Ogilvie (2016) does

not result in convergent results. -
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