
Potential Softening and Eccentricity Dynamics in nearly- Keplerian Discs 

In many astrophysical problems involving discs (gaseous or particulate) orbiting a dominant central mass, the gravitational potential of the disc plays an important
dynamical role. Its impact on the motion of external objects, as well as on the dynamics of the disc itself, can usually be studied using secular approximation. This is
often done by using softened gravity to avoid the singularities that arise when calculating the orbit-averaged potential – disturbing function – of a razor-thin disc
using classical Laplace–Lagrange theory. We explore the performance of several softening formalisms proposed in the literature in reproducing the correct
eccentricity dynamics in the disc potential. We identify softening models that, in the limit of zero softening, give results converging to the expected behaviour
exactly, approximately, or not converging at all. We also develop a general framework for computing the secular disturbing function due to a disc given an arbitrary
softening prescription for a rather general form of the interaction potential. Our results demonstrate that numerical treatments of the secular disc dynamics, i.e. by
representing the disc as a collection of 𝑁 gravitationally interacting annuli, are rather demanding: for a given value of the (dimensionless) softening parameter, 𝜉 ≪
1, accurate representation of eccentricity dynamics requires 𝑁 ~ 𝐶𝜉−𝜒, with 𝐶~𝑂 10 , 1.5 ≲ 𝜒 ≲ 2. In discs with sharp edges a very small value of the softening
parameter 𝜉 ≲ 10−3 is required to correctly reproduce eccentricity dynamics near the disc boundaries; this finding is relevant for modelling planetary rings.
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1. GRAVITATIONAL POTENTIAL OF A DISC
I. Laplace-Lagrange: A common method of computing the orbit-averaged (i.e.
secular) gravitational potential 𝑅𝑑 due to a disc is based on Gauss’ averaging
technique:
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However, this method imposes its own problem: 𝐑𝐝 is divergent at all

locations within the disc (i.e. 𝑎𝑖𝑛 ≤ 𝑎𝑝≤ 𝑎𝑜𝑢𝑡). For instance, the expression

for the free precession rate induced by the disc would read as:

where 𝑏𝑠
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The integrals over 𝑏3/2
𝑚
(𝛼) in 𝐴𝑑 (as well as 𝐵𝑑) are singular – both separately

and in their combination – in the vicinity of a test-particle. This is because
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(𝑚)

⟶ 1− 𝛼 −2 when 𝛼 → 1 (i.e. 𝑎𝑝 = 𝑎).

III. Heppenheimer’s method: The framework first developed by
Heppenheimer (1980) – and later extended by many authors [e.g. Silsbee &
Rafikov 2015 (SR15); Davydenkova & Rafikov 2018 (DR18); Sefilian & Touma
2019] – allows the computation of 𝑅𝑑 without introducing ad hoc softening
parameters. Results obtained by this method have been verified against direct
orbit integrations.

Objective: Assess how well the different formalisms relying on potential softening
reproduce the expected secular dynamics computed using the (unsoftened)
Heppenheimer method.

3. DETAILS OF CONVERGENCE (or not)

Behavior of the axisymmetric
component of 𝑅𝑑 due to a PL
disc (with p = 1) as a function of
the relative separation between a
given test-particle orbit and the
nearest neighboring disc rings.
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where ϵ2(𝛼) > 0 is the softening parameter.
Note: This does not necessarily correspond to substituting 𝑏𝑠

𝑚
(𝛼) with 𝔅𝑠

𝑚
(𝛼, 𝜖) in the expressions of 𝐴𝑑 and 𝐵𝑑 (Ask for details!)

II. Potential Softening: To circumvent this divergence, many authors have

resorted to softened inter-particle interactions. This in turn leads to softened

Laplace coefficients

2. DEPENDENCE ON SOFTENING
We consider an axisymmetric power-law (PL) disc with Σ𝑑(𝑎) = Σ0

𝑎𝑜𝑢𝑡

𝑎

𝑝
and

analyze the behavior of 𝐴𝑑, or equivalently 𝜓1 𝑝 =
𝑛𝑝𝑎𝑝

𝐺Σ𝑑 𝑎𝑝

𝐴𝑑

2𝜋
, as a function of

softening for the different softening formalisms proposed in the literature.

We find similar behavior for both
eccentric, non-axisymmetric PL discs
and non-PL discs (e.g. Gaussian rings)

We find that in the limit of vanishing
softening, results obtained by the
softening formalism of:
• Touma (2002) and Hahn (2003)

converge to the expected results
• Tremaine (1998) show

quantitative differences (~20-
30%)

• Teyssandier & Ogilvie (2016) are
not convergent (like the classical
Laplace-Lagrange approach)

For reference, the expected results as

computed by e.g. Silsbee & Rafikov

(2015) based on Heppenheimer’s

method, i.e. without assuming any

softening, are shown in black lines.

𝜉

Similar results are obtained for
eccentric discs.

→ Secular dynamics in softened

power-law discs is dictated by the

delicate balance between the

opposing contributions of the

disc rings that are close to (i.e.

with 𝑥 ≲ 𝜉, negative) and distant

(i.e. with 𝑥 ≳ 𝜉, positive) from a

given particle orbit.

→ The softening model of TO16

yields inaccurate (divergent) results

due to its inability to capture the

dynamical effects of disc rings that

are adjacent to the test-particle orbit

(those with 𝑥 ≲ 𝜉)

4. IMPLICATIONS FOR NUMERICAL APPLICATIONS

Accurately capturing the secular
dynamics of particle orbits near the
sharp edges of discs/rings requires
using very small values of softening

→ Problematic e.g. for numerical
modelling of planetary rings.

In numerical studies, discs are
often treated as a collection of N
softened annuli or rings with
prescribed spacing interacting
gravitationally with each other.

➔A fine numerical sampling,
with 𝑵 ∼ 𝑪𝝇−𝝌 (such that 𝐶 ∼
𝑂(10) and 1.5 ≲ 𝜒 ≲ 2 ) is
required to ensure that the
correct secular behavior is
reproduced

➔ This could make numerical
studies challenging!Scaling of number of softened disc annuli (rings) N with the

softening parameter 𝜍 to ensure convergence of disc-driven
free precession 𝐴𝑑 in numerically discretized discs to the
expected results in continuous softened discs.

Similar results are obtained for
eccentric discs.

Similar results are obtained for (i)
eccentric discs, and (ii) other
softening formalisms

SUMMARY
- In the limit of zero softening,
•The softening methods of both Touma (2002) and Hahn (2003) correctly
reproduce the expected eccentricity dynamics in razor-thin discs.
•The softening method of Tremaine (1998) yields convergent results. However,
quantitative differences (of up to ~20-30%) are observed.
•The softening method as implemented by Teyssandier & Ogilvie (2016) does
not result in convergent results.

- Numerical studies of secular eccentricity dynamics in softened discs must obey
important constraints (number of rings, magnitude of softening, etc..)

- A direct replacement of the classical Laplace coefficients with their softened
analogues is not sufficient and justified.

5. GENERAL FRAMEWORK FOR COMPUTING Rd

• We also developed a general analytical framework for computing 𝑅𝑑 given an arbitrarily

softened interaction potential: i.e., Ψ = 𝒓1 − 𝒓𝟐
2 + ℱ(𝑟1,𝑟2)

−1/2
(see Appendix A in here)
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• The figure shows that an accurate
implementation of the softened
potential suggested in both Tremaine
(1998) and Teyssandier & Ogilvie
(2016) leads to the recovery of the
expected dynamical behavior in the
limit of small softening.

• We can recover the expressions of both
Touma (2002) and Hahn (2003) if we
set ℱ 𝑟1,𝑟2 = 𝑏𝑐

2 = 𝑐𝑡𝑒 and ℱ 𝑟1,𝑟2 =

𝐻2 𝑟1
2 +𝑟2

2 , respectively.
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